13 .位置エネルギー・運動エネルギーの測定 ・・・・・・

目 的

簡易エネルギー測定器をつくり、それを使って力学的エネルギーを測定しよう。

準 備

【器具〕洗濯ばさみ,ナイロン糸,電池ホルダー,荷造り用平ビニル紐,台車,斜面,ものさし,記録タイマー,紙テープ,ニュートンはかり

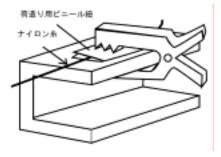
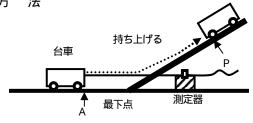
原 理

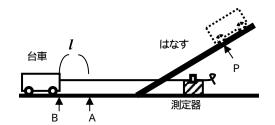
位置エネルギーや運動エネルギーを持った物体は、他の物体に対し仕事ができる。物体が持っていた エネルギーをすべて他の物体に対する仕事に使った場合、その仕事は物体の持っていたエネルギーと 等しい。よって、この仕事を測定することで、物体が持っていた位置エネルギーや運動エネルギーの 大きさがわかる。簡易エネルギー測定装置では、ナイロン糸を物体に引かせる場合に一定の摩擦力が 発生するため、物体がした仕事は、ナイロン糸を引いた距離と摩擦力の積で求められる。

方 法

1.簡易エネルギー測定器の準備

- (1) 図 13-1 のように,電池ホルダーに荷造り用ビニル 紐で包んだナイロン糸を,洗濯ばさみで台ごとはさむ。
- (2) 物体の持っていたエネルギーは、物体がこの糸をどれだけの長さ引くことができるか(仕事ができるか)で測定する。糸を引くのに必要な力をF(N)、物体が糸を引いた距離をI(m)、物体の持っていたエネルギーをE(J)とすると $E=F\times I$ で求められる。


図 13-1 簡易エネルギー測定器

(3) 糸を引く力 F [N] を求めるために, ニュートンはかりにナイロン糸を引っかけ, 測定器を動かす。ニュートンはかりの値を測定し, 下記の空欄に記入する。

摩擦力 *F* = 〔N〕

実 験 位置エネルギーの測定方 法

- (1) 図のように装置を組み立てる。簡易エネルギー測定器を固定する。ナイロン糸を引き始める位置 にビニルテープなどで印をつける。これをA点とする。
- (2) 台車 (0.5kg) を斜面最下点から 10cm の高さに持ってくる (P点)
- (3) 台車を静かに離し、水平面の静止した位置に印をつける。これをB点とする。
- (4) AB間の距離 l(m)を測定する。同じ高さから2回実験を行い1回目、2回目の欄に記入する。

- (5) 台車がした仕事を(摩擦力 F) × (A B 間の距離 \boldsymbol{l})から計算し、これを台車がもつ位置エネルギーとして、表 1 に記入する
- (6) P点の位置を 15cm, 20cm, 25cm と変えて同様の実験を行う。
- (7) P点の位置は10cm として,台車に0.5 kg,1.0 kg,1.5 kgのおもりを乗せて同様の実験を行う。
- (8) 高さと位置エネルギー,質量と位置エネルギーの関係をグラフにする。

結 果

表1 高さと位置エネルギー	台車 0.5 kg
---------------	-----------

P点の	АВ	間の距離 1	台車の持つ位置	
高さ	1回目	2 回目	平均	エネルギー
				J
				J
				J
				J

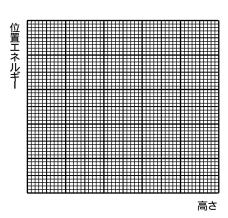
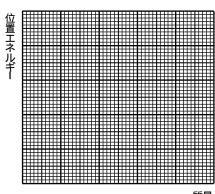



表 2 質量と位置エネルギー 高さ 10㎝

質量 (台車+	A B間の距離 <i>l</i> (m)			台車の持つ位置	
おもり)		1回目	2 回目	平均	エネルギー
				J	
				J	
				J	
				J	

質量

	, 25.A.
ᠽ	


(1)	高さと位置エネルギーについてどんなことがいえるか。

(2)	質量と位置エネル	ギーについてどんな	ことがいえるか。		
-				 	

実 験 運動エネルギーの測定

方法

- (1) 図のように装置を組み立て,台車がナイロン糸を引き始める位置に印をつける。(A点)
- (2) 台車(0.5kg)を右に持っていき,紙テープをつけ記録タイマー(100 打/s)に通す。
- (3) 記録タイマーのスイッチを入れ,台車を手で押し,速さを与える。
- (4) 台車が止まったら記録タイマーのスイッチを切る。台車の止まった位置から,紙テープを引きながらA点まで戻す。ナイロン糸を引き始めた時の紙テープの位置を付けるため,記録タイマーのスイッチを入れる。この印に<×印>を書き込む。
- (5) 紙テープの, < ×印 > 直前の1打間隔を測定し100倍して,簡易エネルギー測定器が働く直前の 台車の速さを求める。
- (6) 紙テープの $< \times$ 印>から最後の打点までの距離(AB間の距離l)を測定する。
- (7) 台車がした仕事を (摩擦力 F) \times (A B間の距離 I) から計算し,これを台車の持っていた運動エネルギーとして,表3に記入する。
- (8) 速さを変えて4回実験を行い,表3に記録する。
- (9) 台車に 0.5kg ,1.0kg ,1.5kg のおもりを乗せて同様の実験を行う。
- (10)速さと運動エネルギーの関係と 速さの2乗と運動エネルギーの関係のグラフを書く。
- (11) 質量 \times 速 2 / 2 と運動エネルギーの関係の グラフを書く。

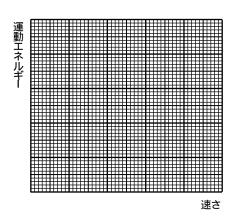


表3 速さと運動エネルギー

速さ (m/s)	速さの2乗	A B間の距 離 <i>l</i> [m]	台車の持つ運動 エネルギー
			J
			J
			J
			J

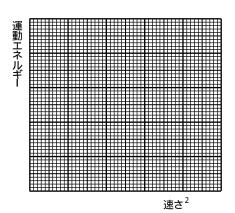


表4 質量と運動エネルギー

質量 (kg)	速さ [m/s]	A B間の距離 <i>l</i> [m]	台車がした仕事	台車の持つ運 動エネルギー	<u>質量×速度²</u> 2
				J	J
				J	J
				J	J
				J	J

考 察 (1) 速さと運動エネルギーのグラフから, 返 ネルギーの間にはどのような関係があるが	か。 ネルギー から ,速さと	質量×速さ² / 2
(3) 質量や速さと運動エネルギーにはどの。	ような関係がある	か。
感想・疑問		

(月)	日 限	共同実験者
	年	組	番 氏名

自己評価 大変やや中立やや大変

 興味関心のある
 実験であった
 実験でなかった

 実習の方法は
 よく理解できた
 1
 理解できなかった

 自主的によく
 取り組めた
 1
 取り組めなかった

 力学的エネルギーがよくわかった
 1
 1
 力からなかった